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Abstract. We give a necessary and sufficient condition for a Gibbs measureµ on the product space

� = (S1)Z
d

to satisfy the spectral gap or the logarithmic Sobolev inequality with the following
quadratic form:

µK(f ) ≡
∫ ∑
k∈Zd

( ∑
j∈k+Y

aj−k∇j f
)2

dµ f ∈ C∞
0 (�)

where Y is a finite set and al are integers. As a consequence we prove that the generalized Kawasaki
dynamics decays exponentially to equilibrium in the supremum norm in a strong mixing region.

1. Introduction

It is well known that the Kawasaki dynamics for discrete spin systems exhibits a different
behaviour from the Glauber dynamics and even at high temperatures the decay to equilibrium
is very slow (cf [De, BZ1, BZ2, JLQY, LY, CM]). Naturally one can ask what happens in the
case of generalized Kawasaki dynamics [ZZ] with a continuous single spin space, where the
generator L is formally given as follows:

µ(f (−Lf )) =
∑

|i−j |=1

µ|∇if − ∇j f |2 (1.1)

with µ being an equilibrium measure and the summation on the right-hand side is extending
over the nearest-neighbour sites of an integer lattice. As indicated in [ZZ] such a model is of
interest for describing a ferroelectric gas.

We show that, in contrast to the discrete case, if the single spin space is given by a unit
circle, due to an additional ‘gauge’ symmetry, at high temperatures the generalized Kawasaki
dynamics is hypercontractive. We also show that such a dynamics has the property of a
finite speed of propagation of information, that is it can be strongly approximated by finite-
dimensional dynamics. This together with the hypercontractivity property implies a strong
exponential decay to equilibrium in the supremum norm.

It is now well known that the above-mentioned features are present in the models of
dynamics with a generator defined by the following standard Dirichlet form:

µD(f ) ≡
∫ ∑

k∈Zd

|∇kf |2 dµ f ∈ C∞
0 (�) (1.2)
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in the mixing region (see, e.g., [HS2, GZ1, GZ2]) for some earlier study of the models with
continuous symmetry see [F, HS1] (for existence, uniqueness and some regularity properties
of the corresponding processes) and [W] (including ergodicity in the uniform norm but at very
high temperatures). Despite this similarity, even in our simple setting with a single spin space
given by a circle, these two dynamics can by no means be considered to be equivalent. To
indicate an example we mention that (by a simple choice of trial functions), one can easily see
that the corresponding quadratic forms (1.1) and (1.2) are not equivalent. (Although naturally
the latter one multiplied by a positive constant dominates the former.) One could also have a
different critical behaviour of both dynamics.

In the special case of a rotator system with spins taking values in a circle, we show that
there is a transformation of a potential which allows one to transform some ‘gauge’-invariant
dynamics corresponding to a non-diagonal quadratic form (such as the generalized Kawasaki
dynamics) to one given in (1.2), but with a properly transformed measure. In this restricted
sense one can talk about a correspondence between two dynamics related to quadratic forms
having an a priori different form.

The organization of the paper is as follows. After a preliminary section 2, we consider
in section 3 the spin systems with a single spin space given by the unit circle and a smooth
finite-range potential. For such systems we formulate a necessary and sufficient condition for a
spectral gap and logarithmic Sobolev inequality to be true with some general class of Dirichlet
forms, which we will call ‘the square of the field forms’. The proof of this result based on an
appropriate change of integration variables and a mixing property for a transformed potential
is given in section 4. Section 5 contains a general example of a system with a small potential
for which the required conditions are satisfied. In section 6 we discuss the construction of a
Markov semigroup with generator corresponding to a general square of the field form. Finally,
in section 7 we explain how to apply our general results to prove the exponential decay to
equilibrium in the uniform norm for the generalized Kawasaki dynamics.

2. Preliminaries

Let Z
d be the d-dimensional integer lattice with the norm |k| = max1�i�d |ki |. We write

k ∼ j iff |k−j | = 1. We use F to denote the set of all non-empty� ⊂ Z
d with the cardinality

|�| <∞.
As a single spin space we consider the unit circle S1, and our configuration space is the

space � = (S1)Z
d

endowed with the product topology.
Given a non-empty � ⊆ Z

d we denote by B�(�), C�(�) and C∞
� (�) the spaces

of bounded measurable, continuous and infinitely differentiable real-valued functions on �
depending only on the variables ωk , k ∈ �. We say that a function is local iff it belongs
to B�(�) for some � ∈ F . We use B0(�), C0(�) and C∞

0 (�) to denote the classes of
bounded measurable, continuous and infinitely differentiable local functions on �. For a
bounded function f on �, we denote by ‖f ‖u the supremum norm of f . Let� ⊆ Z

d , and let
η, ω ∈ �. We denote by η •� ω the element of � determined by (η •� ω)k = ηk , k ∈ � and
(η •� ω)k = ωk , k ∈ �. Given � ⊆ Z

d , f : � → R, and ω ∈ � we denote by f�(·|ω) the
function f�(η|ω) = f (η •� ω), η ∈ �. For a (Borel) probability measure µ on � we use the
following notation for the corresponding expectation:

µf =
∫
�

f (ω)µ(dω).

Let C∞
0 (�)

2 � (f, g) �→ K(f, g) ∈ C∞
0 (�) be a non-negative definite quadratic form which

vanishes if f or g is a constant function. We set K(f ) ≡ K(f, f ).
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Definition 2.1. A probability measureµ on� satisfies the spectral gap inequality with respect
to K, in short µ ∈ SG(K), if there is a constant C <∞ such that

µ(f − µf )2 � CµK(f ) for every f ∈ C∞
0 (�).

We say thatµ satisfies the logarithmic Sobolev inequality with respect to K, in shortµ ∈ LS(K),
if there is a constant C <∞ such that

µf 2 log
f 2

µf 2
� CµK(f ) for every f ∈ C∞

0 (�).

Remark 2.1. It is well known (see, e.g., [S]) that if µ ∈ LS(K), then µ ∈ SG(K).
In the present paper we denote by ν the normalized Lebesgue measure on S1, and by µ0

the corresponding product measure on �. For � ⊆ Z
d , ω ∈ � and f ∈ B(�) we set

〈f 〉�(ω) = µ0f�(·|ω) and ∂�f (ω) = 〈f 〉�(ω)− f (ω).
If� = {k}, then we will write ∂k instead of ∂{k}. Finally, by ∇k we denote the gradient operator
with respect to the kth variable.

A potential is by definition a family � ≡ {�X : X ∈ F} of functions �X ∈ CX(�) such
that

‖�‖ ≡ sup
i∈Zd

∑
X∈F : X�i

‖�X‖u <∞.

The corresponding local energy functional is defined by

U� = −
∑

X∈F : X∩� =∅
�X � ∈ F .

By E(�) we denote the local specification corresponding to�, that is the following family of
operators

E�f =
〈
f exp{−U�}〉

�〈
exp{−U�}〉

�

f ∈ B(�) � ∈ F .

If � = {k} for some point k ∈ Z
d , we simplify the notation writing Uk ≡ U{k} and Ek ≡ E{k}.

We say that a probability measure µ on � is a Gibbs measure for E(�) iff

µE�f = µf for all � ∈ F and f ∈ C0(�).

We denote by G(�) the set of all Gibbs measures for E(�).
Remark 2.2. Note that as� is a compact Polish space and the local specification maps the set
of continuous functions into itself, G(�) = ∅ for any potential on �.

We say that a potential � has finite range if there is an R ∈ Z+ such that �X ≡ 0 for all
X with diamX � R.

Let us denote by�n the cube [−n, n]d ∩ Z
d . For a potential� and a set � ∈ F such that

0 ∈ �, we introduce a potential �(n) with a cut-off as follows:

�
(n)
X =

{
�X if X + � ⊆ �n
0 otherwise.

Let

U(n) = −
∑
X∈F

�
(n)
X .
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Then, as �(n)X ≡ 0 if X ⊆ �n,

µ(n)(dω) = exp{−U(n)(ω)}〈
exp{−U(n)}〉

�n

µ0(dω)

is the unique Gibbs measure for E(�(n)). The following lemma will be useful in the next
section.

Lemma 2.1. Let� be a finite-range potential, let � ∈ F , 0 ∈ �. Then there is a subsequence
{nj } and a Gibbs measure µ ∈ G(�) such that

lim
j→∞

µ(nj )f = µf for every f ∈ C(�). (2.1)

Under our assumptions, the proof follows from the fact that for any given finite set X ∈ F
there is an N such that for all n > N one has

µ(n)EXf = µ(n)f
and one can choose a convergent subsequence to a Gibbs measure.

We use G�(�) to denote the class of all Gibbs measures µ ∈ G(�) such that (2.1) holds
true for some sequence {nj }. Lemma 2.1 ensures that G�(�) = ∅.

3. Spectral gap and logarithmic Sobolev inequality for non-diagonal forms

Let Y ∈ F , Y = ∅ and a = (ai)i∈Y ∈ (Z \ {0})Y be such that

0 ∈ Y 0 ∈ convex hull of (Y \ {0}) and a0 ∈ {−1, 1}. (3.1)

Later on we will use θ to denote a pair (Y,a) satisfying (3.1). Let

Kθ (f )(ω) =
∑
k∈Zd

( ∑
j∈k+Y

aj−k∇j f (ω)
)2

f ∈ C∞
0 (�). (3.2)

In our considerations an important role is played by the following transformation of variables
ξθ : �→ �: (

ξθ (ω)
)
j

=
∑
k∈j−Y

aj−kωk j ∈ Z
d ω ∈ �.

For X ∈ F we set

A(X) = {X̃ ∈ F : X̃ − Y = X}.
Given a potential � we introduce a transformed potential �θ ≡ {

�θX : X ∈ F} as follows:

�θX =




0 if A(X) = ∅∑
X̃∈A(X)

�X̃ ◦ ξθ if A(X) = ∅. (3.3)

Let us denote by D the following (diagonal) square of the field

D(f )(ω) =
∑
k∈Zd

|∇kf (ω)|2 f ∈ C∞
0 (�).

We will prove the following equivalence theorem

Theorem 3.1. Suppose that � is a finite-range potential such that there is a unique Gibbs
measure µ ∈ G(�). Let�θ be the corresponding transformed potential given by (3.3). Then:

(a) µ ∈ SG(Kθ ) if and only if for any µ̃ ∈ G−Y (�θ) one has µ̃ ∈ SG(D).
(b) µ ∈ LS(Kθ ) if and only if for any µ̃ ∈ G−Y (�θ) one has µ̃ ∈ LS(D).
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4. Proof of theorem 3.1

Let E(�θ) = {
E
θ
� : � ∈ F} be the local specification corresponding to �θ , that is

E
θ
�f =

〈
f exp{−Uθ�}〉

�〈
exp{−Uθ�}〉

�

where Uθ� = −
∑

X∈F :X∩� =∅
�θX.

Since ∑
X∈F :X∩� =∅

�θX =
∑

X̃∈F :(X̃−Y )∩� =∅
�X̃ ◦ ξθ =

∑
X̃∈F :X̃∩(�+Y ) =∅

�X̃ ◦ ξθ

we have

Uθ� = U�+Y ◦ ξθ � ∈ F (4.1)

and consequently

E
θ
�f =

〈
f exp{−U�+Y ◦ ξθ

〉
�〈

exp{−U�+Y ◦ ξθ
〉
�

f ∈ C∞
0 (�) � ∈ F .

Note that if � has a finite range, the same is true for �θ .

Lemma 4.1. Assume (3.1). Then for all cubes �n = [−n, n]d ∩ Z
d and �l = [−l, l]d ∩ Z

d

satisfying �l − Y ⊆ �n, and for every f ∈ C�l (�) one has〈
f ◦ ξθ

〉
�n

= 〈f 〉�n = 〈f 〉�l .

Proof. Let�n,�l be such that�l − Y ⊆ �n. The proof will be completed as soon as we can
show that the following transformation of variables:

ηk =
{
ωk if k ∈ �n \ (�l − Y )(
ξθ (ω)

)
k

if k ∈ �l − Y

preserves the measure µ0 on �n = (S1)�n . To this end we introduce a lexicographic order
{ki}, i = 1, . . . , |�n| in �n satisfying{

ki : i = 1, . . . , |�n \ (�l − Y )|
} = �n \ (�l − Y )

and for i > |�n \ (�l − Y )|,
(ki − Y ) ∩ (�l − Y ) = {kr : |�n \ (�l − Y )| < r � i}.

The existence of such an order is guaranteed by (3.1). Now consider the Jacobian matrix

A =
{
∂ηki

∂ωkj

}
i, j = 1, . . . , |�n|.

Clearly, A is an upper-triangular matrix. Since a0 ∈ {−1, 1}, the elements on its diagonal are
from {−1, 1}. Thus | detA| = 1, which completes the proof. �

Lemma 4.2. Assume that the hypothesis of theorem 3.1 is fulfilled. Let µ̃ ∈ G−Y (�θ). Then
µ̃f ◦ ξθ = µf for every f ∈ C0(�).
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Proof. Let µ̃ ∈ G−Y (�θ). Then there is a sequence {nj } such that

µ̃f = lim
j→∞

〈
f exp{−Ũ (nj )}〉

�nj〈
exp{−Ũ (nj )}〉

�nj

f ∈ C0(�)

where

Ũ (n) = −
∑

X∈F : X−Y⊆�n
�θX.

Since µ is a unique Gibbs measure for E(�), lemma 2.1 yields that there is a subsequence
{mj } of {nj } such that

µf = lim
j→∞

〈
f exp{−U(mj )}〉

�mj〈
exp{−U(mj )}〉

�mj

f ∈ C0(�)

where

U(n) = −
∑

X∈F : X−Y−Y⊆�n
�X.

Now note that

Ũ (n) = −
∑

X∈F : X−Y⊆�n
�θX = −

∑
X̃∈F : X̃−Y−Y⊆�n

�X̃ ◦ ξθ = U(n) ◦ ξθ .

Thus, for any f ∈ C0(�), we have

µ̃f ◦ ξθ = lim
j→∞

〈
(f exp{−U(mj )}) ◦ ξθ

〉
�mj〈

exp{−U(mj )} ◦ ξθ
〉
�mj

f ∈ C0(�).

Combining this with (4.1) and lemma 4.1 we obtain the desired conclusion. �

Proof of theorem 3.1. Let us observe that

∇k(f ◦ ξθ ) =
( ∑
j∈k+Y

aj−k∇j f
)

◦ ξθ for f ∈ C∞
0 (�) k ∈ Z

d .

Thus

D(f ◦ ξθ ) = Kθ (f ) ◦ ξθ for f ∈ C∞
0 (�) k ∈ Z

d .

Now assume that µ ∈ G(�) satisfies SG(Kθ ). Let µ̃ ∈ G−Y (�θ). Then, by lemma 4.2 for any
f ∈ C∞

0 (�) we have

µ̃
(
f ◦ ξθ − µ̃f ◦ ξθ

)2 = µ(f − µf )2 � CµKθ (f ) = Cµ̃Kθ (f ) ◦ ξθ
� Cµ̃D(f ◦ ξθ ).

Since f �→ f ◦ξθ is a bijection onC∞
0 (�), µ̃ satisfies SG(D). Assume now that µ̃ ∈ G−Y (�θ)

satisfies SG(D). Then for all f we have

µ
(
f − µf )2 = µ̃(f ◦ ξθ − µ̃f ◦ ξθ

)2 � Cµ̃D(f ◦ ξθ ) � CµKθ (f ).
Thus µ satisfies SG(Kθ ), and the proof of the first part of the theorem is completed. The
same arguments can be applied in a proof of the second part concerning logarithmic Sobolev
inequalities. �
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5. Dobrushin–Shlosman mixing and logarithmic Sobolev inequalities

Definition 5.1. We say that the local specification E(�) satisfies the Dobrushin–Shlosman
mixing condition iff there is an X ∈ F with 0 ∈ X, and a family of non-negative numbers αl,j
for l ∈ X and j ∈ X such that

β = 1 − 1

|X|
∑

l ∈X,j∈X
αl,j > 0 (5.1)

and for all l ∈ X, k ∈ Z
d , f ∈ C∞

0 (�) and Z ⊆ X one has

‖∂l+kEk+Zf − Ek+Z∂l+kf ‖u �
∑
j∈X
αl,j‖∂j+kf ‖u. (5.2)

Remark 5.1. Note that if the potential family is shift-invariant, then it satisfies the Dobrushin–
Shlosman condition iff (5.1) holds and if (5.2) is satisfied for k = 0.

Remark 5.2. The Dobrushin–Shlosman condition ensures the uniqueness of the Gibbs
measure µ for E(�) (see, e.g., [S]).

For further references we recall the following result of Stroock and Zegarlinski (see, e.g.,
[S, SZ1], or [SZ2]).

Theorem 5.1. Assume that� is a C2 potential of finite range, and that the local specification
E(�) satisfies the Dobrushin–Shlosman mixing condition. Then the unique Gibbs measure µ
satisfies LS(D).
As a direct consequence of theorems 3.1 and 5.1 we have;

Corollary 5.1. Let � be a C2 potential of finite range. If E(�) and E(�θ) satisfy the
Dobrushin–Shlosman mixing condition, then the unique Gibbs measure µ ∈ G(�) satisfies
LS(Kθ ).

In the next result we show that there always exists a high-temperature region where our
conditions are satisfied.

Proposition 5.1 (Small potential case). Let � be a C2 potential of a finite range R. Assume
that

sup
k∈Zd

‖U{k+Y }‖u <
1
4 log

(
1 + (R + diam Y )−1

)
sup
k∈Zd

‖Uk‖u <
1
4 log

(
1 + R−1

)
.

(5.3)

Then there is a unique Gibbs measure µ for E(�), and µ satisfies LS(Kθ ).

Proof. Note that the range of�θ is less than or equal toR+diam Y . According to corollary 5.1
it is enough to show that (5.3) implies that E(�θ) and E(�) satisfy the Dobrushin–Shlosman
mixing condition with X = {0}. To do this we have to prove that there are positive constants
α and α̃ satisfying (R + diam Y )α < 1 and Rα̃ < 1 such that

‖∂lEθkf − E
θ
k∂lf ‖u � α‖∂kf ‖u for all k = l and f ∈ C∞

0 (�) (5.4)

and

‖∂lEkf − Ek∂lf ‖u � α̃‖∂kf ‖u for all k = l and f ∈ C∞
0 (�). (5.5)
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Let k, l ∈ Z
d , k = l. Note that for all f and ω we have[

∂l,E
θ
k

]
f (ω) = (

∂lE
θ
kf − E

θ
k∂lf

)
(ω)

=
∫
�

∫
�

(
ρk(x •l (y •k ω))− ρk(y •k ω)

)
f (x •l (y •k ω))µ(dx)µ(dy)

where the density ρk of E
θ
k is given by

ρk(ω) = exp{−Uθk (ω)}〈
exp{−Uθk }(ω)

ω ∈ �.

Using (4.1) we obtain

ρk(ω) = exp{−Uk+Y ◦ ξθ (ω)}〈
exp{−Uk+Y ◦ ξθ }(ω)

ω ∈ �.

Since ∫
�

ρk(x •l (y •k ω))µ0(dy) = 1 =
∫
�

ρk(y •k ω)µ0(dy)

we have[
∂l,E

θ
k

]
f (ω) = −

∫
�

∫
�

(ρk(x •l (y •k ω))− ρk(y •k ω))(∂kf )(x •l (y •k ω))µ0(dx)µ0(dy).

Thus (5.4) holds true with

α = sup
k

sup
x,y,ω∈�

(
ρk(x •l (y •k ω))
ρk(y •k ω) − 1

)
� sup

k

sup
ω,v∈�

ρk(ω)

ρk(v)
− 1

� sup
k

exp{4‖Uk+Y‖u} − 1

having the desired property. In the same way one can show that (5.3) yields (5.5) withRα̃ < 1.
�

6. A class of infinite-volume stochastic dynamics

In this section we briefly describe the construction of an infinite-volume Markov semigroup
corresponding to a general square of the field form K. We consider a configuration space given
by a product space � ≡ MZ

d

, where M is a smooth compact and connected Riemannian
manifold. Let W ≡ {Wi}i∈Zd be a collection of C∞ vector fields defined as a following lift of
the given smooth vector fields wi on M :

Wif (ω) ≡ wif (ωi |ω).
Given a finite set Y we define the following vector fields on �:

WY ≡
∑
j∈Y
Wj .

With this notation we introduce the following square of the field forms:

K(f ) ≡
∑
k∈Zd

(Wk+Y f )
2
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with a domain including smooth cylinder functions f ∈ C∞
0 (�). Given a local specification

E(�) corresponding to a smooth potential of finite range, we can now introduce the following
elementary Markov operators on C2(�):

LY f ≡ W 2
Y f + βY ·WYf

where we have set

βY ≡ divWY +WYUY

with

divWY ≡
∑
j∈Y

divj Wj

and divj Wj is defined by the corresponding lift of divwj on the manifold M . With this
notation one can see that

EY (WYf )
2 = EY (f (−LY f )).

For later purposes we introduce the following free Markov generator:

L0 ≡
∑
k∈Zd

W 2
k+Y f.

We note that L0 is local, that is for any f ∈ C2 dependent only on ωj , j ∈ �f , one has

L0f =
∑
k∈Zd

W 2
(k+Y )∩�f f

and therefore �L0f ⊂ �f . This property allows us to easily define a Markov semigroup
P 0
t ≡ etL

0
on C0(�). For any finite set � ∈ F we introduce a finite-volume generator

L�f ≡ L0f +
∑
k

β(k+Y )∩� ·W(k+Y )∩�f

with a convention that β∅ ≡ 0. We note that L� is again local and therefore it is easy to
construct the corresponding Markov semigroup P (�)t ≡ etL� on C0(�).

With the above assumptions and notation the following result is true.

Theorem 6.1. Suppose that

sup
k∈Zd ,X⊂Y

‖βk+X‖u <∞

and

D ≡ sup
k∈Zd ,Z,�∈F :|Z|�|Y |

‖WZ(β(k+Y )∩�)‖u <∞.

Then for any f ∈ C1
0(�) the following limit exists:

Ptf ≡ lim
�→∞

P
(�)
t f

with the generator L satisfying

µ(f (−Lf )) = K(f ).
Moreover, the following exponential approximation property is true: for anyA ∈ (0,∞) there
is B ∈ (0,∞) such that

‖Ptf − P (�)t f ‖u � e−AtC(f )

with some constant C(f ) ∈ (0,∞) dependent only on f and the field W , provided that

dist(�f ,Z
d \�) � Bt.



5910 G Kondrat et al

Proof. For �1 ∈ F and �2 ≡ �1 ∪ {i}, we have

P
(�2)
t f − P (�1)

t f =
∫ t

0
ds

d

ds
P
(�1)
t−s P

(�2)
s f =

∫ t

0
ds P (�1)

t−s (L�2 − L�1)P
(�2)
s f. (6.1)

Next we note that

(L�2 − L�1)F =
∑

k:dist(k+Y,i)�R

[
β(k+Y )∩�2W(k+Y )∩�2 − β(k+Y )∩�1W(k+Y )∩�1

]
(6.2)

whereR is the range of the interaction. Hence taking into the account that we consider Markov
semigroups here, we obtain

‖P (�2)
t f − P (�1)

t f ‖u � sup
k∈Zd ,X⊂Y

‖βk+X‖u

∑
Z: ∃k dist(k+Y,i)�R,Z⊂k+Y

∫ t

0
ds ‖WZP (�2)

s f ‖u. (6.3)

Thus to complete the proof it is sufficient to obtain a bound for ‖WZP (�2)
s f ‖u for Z ⊂ k + Y ,

k ∈ Z
d . To this end we note that

WZP
(�2)
s f = P (�2)

s WZf +
∫ s

0
dτP (�2)

s−τ [WZ,L�2 ]P (�2)
τ f. (6.4)

Noting that [WZ,L0] = 0 we have

[WZ,L�2 ] =
[
WZ,

∑
k

β(k+Y )∩�2W(k+Y )∩�2

]

=
∑

k:dist(Z,(k+Y )∩�2)�R
WZ(β(k+Y )∩�2)W(k+Y )∩�2 . (6.5)

From (6.4) and (6.5) we conclude that

‖WZP (�2)
s f ‖u � ‖WZf ‖u +D

∑
k:dist(Z,(k+Y )∩�2)�R

∫ s

0
dτ ‖W(k+Y )∩�2P

(�2)
s f ‖u (6.6)

with

D ≡ sup
k∈Zd ,Z,�∈F :|Z|�|Y |

‖WZ(β(k+Y )∩�)‖u.

Given the inequality (6.6) the rest of the proof goes in a standard way (see, e.g., [GZ1]). �

7. Exponential decay to equilibrium for Kawasaki dynamics

Let the single spin space be given by S1. We choose Y to be a set consisting of the origin
and one of its nearest neighbours i1 and a = {−1,+1}. Then by theorem 3.1 a unique Gibbs
measure µ� related to a finite-range potential � satisfies SG or LS with the corresponding
form

K̄(f ) ≡
∑
k

|(∇k+i1 − ∇k)f |2

provided these inequalities remain true for a unique Gibbs measure µ�θ with the diagonal
form. This naturally implies that SG, respectively, LS, is true for the form

K(f ) ≡
∑

j,k:|j−k|=1

|(∇k − ∇j )f |2
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which is not smaller than K̄. As we have indicated in section 5 such a situation is true for
any potential of finite range, provided the temperature of the system is sufficiently high (cf
proposition 5.1). In particular, if LS(K) is satisfied, then the corresponding semigroup is
hypercontractive. This together with the strong approximation property (theorem 6.1) allows
one to apply the general strategy of Holley and Stroock (see, e.g., [SZ1]) to prove the uniform
exponential decay to equilibrium. Thus we conclude with the following result.

Theorem 7.1. Suppose for a finite-range potential �, the local specification E(�θ) satisfies
the mixing condition. Then the Kawasaki dynamics Pt ≡ etL is strongly exponentially ergodic,
that is for any function f ∈ C1

0(�) we have

‖Ptf − µ�f ‖u � Cαe−αmt∑
k

‖∇kf ‖u

with m ≡ gap
L2(µ)

(−L) and any α ∈ (0, 1) with a constant Cα ≡ Cα(�f ) dependent only on
�f and the choice of α.

We stress that our mixing requirement involves the transformed potential. We note that
the conditions are always satisfied in one dimension (as our transformation ξθ transforms
finite-range potentials into finite-range potentials). Clearly, in higher dimensions the domain
of strong mixing may depend on the potential (but in any case there always exists a non-trivial
high-temperature region where the required mixing is true).
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